Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28418, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560172

RESUMO

Seaweed research has gained substantial momentum in recent years, attracting the attention of researchers, academic institutions, industries, policymakers, and philanthropists to explore its potential applications and benefits. Despite the growing body of literature, there is a paucity of comprehensive scientometric analyses, highlighting the need for an in-depth investigation. In this study, we utilized CiteSpace to examine the global seaweed research landscape through the Web of Science Core Collection database, assessing publication trends, collaboration patterns, network structures, and co-citation analyses across 48,278 original works published since 1975. Our results demonstrate a diverse and active research community, with a multitude of authors and journals contributing to the advancement of seaweed science. Thematic co-citation cluster analysis identified three primary research areas: "Coral reef," "Solar radiation," and "Mycosporine-like amino acid," emphasizing the multidisciplinary nature of seaweed research. The increasing prominence of "Chemical composition" and "Antioxidant" keywords indicates a burgeoning interest in characterizing the nutritional value and health-promoting properties of seaweed. Timeline co-citation analysis unveils that recent research priorities have emerged around the themes of coral reefs, ocean acidification, and antioxidants, underlining the evolving focus and interdisciplinary approach of the field. Moreover, our analysis highlights the potential of seaweed as a functional food product, poised to contribute significantly to addressing global food security and sustainability challenges. This study underscores the importance of bibliometric analysis in elucidating the global seaweed research landscape and emphasizes the need for sustained knowledge exchange and collaboration to drive the field forward. By revealing key findings and emerging trends, our research offers valuable insights for academics and stakeholders, fostering a more profound understanding of seaweed's potential and informing future research endeavors in this promising domain.

2.
Mar Environ Res ; 197: 106450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552454

RESUMO

Global climate changes induce substantial alterations in the marine system, including ocean acidification (OA), desalination and warming of surface seawater. Here, we examined the combined effects of OA and reduced salinity under different temperatures on the growth and photosynthesis of the diatom Skeletonema costatum. After having been acclimated to 2 CO2 concentrations (400 µatm, 1000 µatm) and 2 salinity levels (20 psu, 30 psu) at temperature levels of 10 °C and 20 °C, the diatom showed enhanced growth rate at the lowered salinity and elevated pCO2 irrespective of the temperature. The OA treatment increased the net photosynthetic rate and biogenic silica (Bsi) contents. Increasing the temperature from 10 to 20 °C raised the net photosynthetic rate by over twofold. The elevated pCO2 increased the net and gross photosynthetic rates by 20%-40% and by 16%-32%, respectively, with the higher enhancement observed at the higher levels of salinity and temperature. Our results imply that OA and desalination along with warming to the levels tested can enhance S. costatum's competitiveness in coastal phytoplankton communities under influence of future climate changes.


Assuntos
Diatomáceas , Água do Mar , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Fotossíntese , Água , Dióxido de Carbono
3.
Mar Environ Res ; 196: 106425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442592

RESUMO

Coastal waters undergo dynamic changes in seawater carbonate chemistry due to natural and anthropogenic factors. Despite this, our current understanding of how coastal phytoplankton respond to fluctuating pH is limited. In the present study, we investigated the physiological responses of two coastal diatoms Thalassiosira pseudonana and Thalassiosira weissflogii to seawater acidification and diurnally fluctuating pH under natural solar irradiance. Seawater acidification did not significantly impact the growth, maximum and effective quantum yield of PSII, and photosynthetic rates of the two species. However, it did increase the maximum relative electron transport rate of T. weissflogii by 11%. Overall, fluctuating pH had neutral or positive effects on both species. It enhanced the light-saturated photosynthetic rate of T. weissflogii by 20% compared to cells grown under seawater acidification condition. Results from the short-term pH exposure experiment revealed that the photosynthetic rates of both species remained unaffected by acute pH changes, indicating their tolerance to varying pH. Nevertheless, it is crucial to consider dynamic pH when predicting changes in primary production in coastal waters, given the interplay of various environmental drivers.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Água do Mar , Acidificação dos Oceanos , Concentração de Íons de Hidrogênio , Dióxido de Carbono , Fotossíntese/fisiologia
4.
PLoS One ; 19(2): e0295686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324513

RESUMO

Phytoplankton face numerous pressures resulting from chemical and physical stressors, primarily induced by human activities. This study focuses on investigating the interactive effects of widely used antifouling agent Irgarol 1051 and UV radiation on the photo-physiology of marine diatoms from diverse latitudes, within the context of global warming. Our findings clearly shown that both Irgarol and UV radiation have a significant inhibitory impact on the photochemical performance of the three diatoms examined, with Irgarol treatment exhibiting more pronounced effects. In the case of the two temperate zone diatoms, we observed a decrease in the inhibition induced by Irgarol 1051 and UVR as the temperature increased up to 25°C. Similarly, for the subarctic species, an increase in temperature resulted in a reduction in the inhibition caused by Irgarol and UVR. These results suggest that elevated temperatures can mitigate the short-term inhibitory effects of both Irgarol and UVR on diatoms. Furthermore, our data indicate that increased temperature could significantly interact with UVR or Irgarol for temperate diatoms, while this was not the case for cold water diatoms, indicating temperate and subarctic diatoms may respond differentially under global warming.


Assuntos
Diatomáceas , Triazinas , Humanos , Diatomáceas/fisiologia , Raios Ultravioleta , Temperatura , Fitoplâncton/fisiologia
5.
RSC Adv ; 14(5): 3085-3095, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239451

RESUMO

Marine animals and human are threatened by seawater acidification and metal contamination. Especially, the toxicity of copper (Cu) is expected to be boosted with seawater acidification. However, studies on the removal of Cu under seawater acidification are limited for practical applications, owing to obstacles such as instability, secondary contamination, and low adsorption efficiency. In this work, coconut shells were utilized for the synthesis of biomass carbon, which was then decorated with MoS2. A novel porous MoS2/carbon-based aerogel (MCA) with the synergistic effect of photothermal conversion and adsorption was constructed via directional freeze-drying technology. The adsorption properties of MCA were a precise match with Freundlich isotherm and pseudo-second-order kinetic models with a high correlation coefficient (R2) of more than 0.995. Under solar illumination, the surface temperature of MCA reached up to 36.3 °C and the adsorption capacity of MCA increased to 833.8 mg g-1, indicating that the remarkable thermal properties of MCA contributed to achieving high adsorption capacity. The adsorption mechanisms of MCA involved in the removal of Cu(ii) ions were dominated by chemisorption rather than surface physical adsorption. Owing to its outstanding photothermal conversion performance and directionally aligned porous structure, MCA was able to remove Cu(ii) species from seawater, and the adsorption ability of MCA reached 247.1 mg g-1 after ten adsorption cycles. MCA exhibited excellent stability to resist the complex natural environment and was easy to reuse. Overall, MCA with a series of merits, including high adsorption efficiency, excellent photothermal conversion property, and outstanding cycling stability, was confirmed to contribute to addressing heavy metal stress under seawater acidification.

6.
Microbiol Spectr ; 12(2): e0200223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193726

RESUMO

Marine ecosystems contain an immense diversity of phages, many of which infect cyanobacteria (cyanophage) that are largely responsible for primary productivity. To characterize the genetic diversity and biogeographic distribution of the marine T4-like cyanophage community in the northern South China Sea, the T4-like cyanophage portal protein gene (g20) was amplified. Phylogenetic analysis revealed that marine T4-like cyanophages were highly diverse, with g20 operational taxonomic units being affiliated with five defined clades (Clusters I-V). Cluster II had a wide geographic distribution, Cluster IV was the most abundant in the open sea, and Cluster I was dominant in coastal shelf environments. Our results showed T4-like cyanophages (based on g20) community was generally shaped via heterogeneous selection. Highly variable environmental factors (such as salinity and temperature) can heterogeneously select different cyanophage communities. Nevertheless, the dominant drivers of the T4-like cyanophage community based on the g20 and g23 (T4-like phage major capsid protein gene) were different, probably due to different coverages by the primer sets. Furthermore, the community assembly processes of T4-like cyanophages were affected by host traits (abundance and distribution), viral traits (latent period, burst size, and host range), and environmental properties (temperature and salinity).IMPORTANCECyanophages are abundant and ubiquitous in the oceans, altering population structures and evolution of cyanobacteria, which account for a large portion of global carbon fixation, through host mortality, horizontal gene transfer, and the modulation of host metabolism. However, little is known about the biogeography and ecological drivers that shape the cyanophage community. Here, we use g20 and g23 genes to examine the biogeographic patterns and the assembly mechanisms of T4-like cyanophage community in the northern part of the South China Sea. The different coverages of primer sets might lead to the different dominant drivers of T4-like cyanophage community based on g20 and g23 genes. Our results showed that characteristics of viral traits (latent period, burst size, and host range) and host traits (abundance and distribution) were found to either limit or enhance the biogeographic distribution of T4-like cyanophages. Overall, both virus and host properties are critical to consider when determining rules of community assembly for viruses.


Assuntos
Bacteriófagos , Cianobactérias , Filogenia , Ecossistema , Bacteriófagos/genética , Proteínas do Capsídeo/genética , Capsídeo
7.
Glob Chang Biol ; 30(1): e17018, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937464

RESUMO

Blooms of microalgal red tides and macroalgae (e.g., green and golden tides caused by Ulva and Sargassum) have caused widespread problems around China in recent years, but there is uncertainty around what triggers these blooms and how they interact. Here, we use 30 years of monitoring data to help answer these questions, focusing on the four main species of microalgae Prorocentrum donghaiense, Karenia mikimotoi, Noctiluca scintillans, and Skeletonema costatum) associated with red tides in the region. The frequency of red tides increased from 1991 to 2003 and then decreased until 2020, with S. costatum red tides exhibiting the highest rate of decrease. Green tides started to occur around China in 1999 and the frequency of green tides has since been on the increase. Golden tides were first reported to occur around China in 2012. The frequency of macroalgal blooms has a negative linear relationship with the frequency and coverage of red tides around China, and a positive correlation with total nitrogen and phosphorus loads as well as with atmospheric CO2 and sea surface temperature (SST). Increased outbreaks of macroalgal blooms are very likely due to worsening levels of eutrophication, combined with rising CO2 and SST, which contribute to the reduced frequency of red tides. The increasing grazing rate of microzooplankton also results in the decline in areas affected by red tides. This study shows a clear shift of algal blooms from microalgae to macroalgae around China over the past 30 years driven by the combination of eutrophication, climate change, and grazing stress, indicating a fundamental change in coastal systems in the region.


Assuntos
Dinoflagelados , Microalgas , Alga Marinha , Mudança Climática , Dióxido de Carbono , Eutrofização , China
8.
Ren Fail ; 45(2): 2283589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047534

RESUMO

OBJECTIVE: This study evaluated the efficacy and safety of limb ischemic preconditioning (LIPC) in treating restless leg syndrome (RLS) in maintenance hemodialysis (MHD) patients. METHODS: A total number of 45 patients participated in the study. They were randomly divided into LIPC group and control group. The LIPC was performed by inflating the limb ischemic preconditioning training device in the patient's thigh to 200 mmHg to create transient ischemia, whereas control group inflated the device to 20 mmHg. International Restless Legs Syndrome (IRLS), Clinical Global Impression Scale (CGI-S), and Medical Outputs Study Sleep Scale were employed to evaluate LIPC effectiveness. The primary endpoint was the 'rate of clinical improvement in RLS severity', defined as the percentage of patients who had an IRLS score decrease of ≥5 points in each group. RESULTS: After intervention, the rate of clinical improvement in RLS severity was 56.5% in the LIPC group and 13.6% in the control group (13 (56.5) vs 3 (13.6), p = 0.003). In addition, the LIPC group's IRLS, CGI-S scores, the sleep disturbance and somnolence scores showed a significant downward trend compared to the control group (-5.5 ± 5.3 vs - 1.0 ± 3.8, p = 0.002; -1.7 ± 1.2 vs - 0.5 ± 1.4, p = 0.003; -15.5 ± 17.8 vs 3.7 ± 12.0, p < 0.001; -9.9 ± 18.8 vs - 2.4 ± 8.6, p = 0.003). During the study, there were no serious adverse event in any of the patients. CONCLUSIONS: LIPC could be employed to effectively and safely alleviate the RLS symptoms in MHD patients.


Assuntos
Precondicionamento Isquêmico , Síndrome das Pernas Inquietas , Transtornos do Sono-Vigília , Humanos , Síndrome das Pernas Inquietas/complicações , Síndrome das Pernas Inquietas/terapia , Síndrome das Pernas Inquietas/diagnóstico , Método Duplo-Cego , Diálise Renal , Resultado do Tratamento , Índice de Gravidade de Doença
9.
Mar Genomics ; 72: 101069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008529

RESUMO

Pseudoalteromonas is a widely distributed bacterial genus that is associated with marine algae. However, there is still limited knowledge about their bacteriophage. In this study, we reported the isolation of a novel lytic bacteriophage that infects Pseudoalteromonas marina. Transmission electron microscopy revealed that PS_L5 had an icosahedral head of 52.6 ± 2 nm and a non-contractile tail with length of 96.5 ± 2 nm. The genome sequence of this phage was 34, 257 bp and had a GC content of 40.75%. Furthermore, this genome contained 61 predicted open reading frames (ORFs), which involved in various functions such as phage structure, packaging, DNA metabolism, host lysis and other additional functions. Additionally, the phylogenetic analysis based on major capsid protein showed that the phage PS_L5 was closely related to five other Pseudoalteromonas phages, namely PHS3, PHS21, AL, SL25 and Pq0 which also possessed the non-contractile long tail. This study provided the fundamental insights into the evolutionary dynamics of Pseudoalteromonas phages and the interaction between phage and host.


Assuntos
Bacteriófagos , Pseudoalteromonas , Siphoviridae , Filogenia , Pseudoalteromonas/genética , DNA Viral/genética , Genoma Viral , Siphoviridae/genética , Bacteriófagos/genética , Genômica , Fases de Leitura Aberta
10.
Mar Environ Res ; 192: 106216, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37891025

RESUMO

Seaweed has garnered increasing interest due to its capacity to mitigate climate change by curbing carbon emissions from agriculture, as well as its potential to serve as a supplement or alternative for dietary, livestock feed, or fuel source production. Moreover, seaweed is regarded as one of the earliest plant forms to have evolved on Earth. Owing to the extensive body of literature available and the uncertainty surrounding the future trajectory of seaweed research under evolving climate conditions, this review scrutinizes the structure, dynamics, and progression of the literature pertaining to seaweed and climate change. This analysis is grounded in the Web of Science Core Collection database, augmented by CiteSpace software. Furthermore, we discuss the productivity and influence of individual researchers, research organizations, countries, and scientific journals. To date, there have been 8047 articles published globally (after a series of filters and exclusions), with a notable upswing in publication frequency since 2018. The USA, China, and Australia are among the leading countries contributing to this research area. Our findings reveal that current research on seaweed and climate change encompasses 13 distinct research clusters, including "marine heatwave", "temperate estuary", "ocean acidification", and "macroalgal bloom". The most frequently cited keywords are "climate change", "biomass", "community", and "photosynthesis". The seaweed species most commonly referenced in relation to climate change include Gracilaria sp., Sargassum sp., Ecklonia maxima, and Macrocystis pyrifera. These results provide valuable guidance for shaping the direction of specialized topics concerning marine biodiversity under shifting climate conditions. We propose that seaweed production may be compromised during prolonged episodes of reduced water availability, emphasizing the need to formulate strategies to guarantee its continued viability. This article offers fresh perspectives on the analysis of seaweed research in the context of impending climate change.


Assuntos
Alga Marinha , Mudança Climática , Biomassa , Biodiversidade , Estuários
11.
Photochem Photobiol ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528525

RESUMO

Under global change scenarios, the sea surface temperature is increasing steadily along with other changes to oceanic environments. Consequently, marine diatoms are influenced by multiple ocean global change drivers. We hypothesized that temperature rise mediates the responses of polar and temperate diatoms to UV radiation (UVR) to different extents, and exposed the temperate centric diatoms, Thalassiosira weissflogii and Skeletonema costatum, and a polar pennate diatom Entomoneis sp., to warming (+5°C) for 10 days, then performed short-term incubations under different radiation treatments with or without UVR. The effective quantum yields of the three diatoms were stable during exposure to PAR, but decreased when exposed to PAR + UVR, leading to significant UV-induced inhibition, which was 3% and 9%, respectively, for T. weissflogii and S. costatum under ambient temperature but increased to 12% and 17%, respectively, in the cells acclimated to the warming treatment. In contrast, UVR induced much higher inhibition, by about 45%, in the polar diatom Entomoneis sp. at ambient temperature, and the warming treatment alleviated the UV-induced inhibition, which dropped to 36%. The growth rates were significantly inhibited by UVR in S. costatum under the warming treatment and in Entomoneis sp. under ambient temperature, while there was no significant effect for T. weissflogii. Our results indicate that the polar diatom was more sensitive to UVR though warming could alleviate its impact, whereas the temperate diatoms were less sensitive to UVR but warming exacerbated its impacts, implying that diatoms living in different regions may exhibit differential responses to global changes.

12.
Biomed Pharmacother ; 165: 115269, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541179

RESUMO

Septic acute kidney injury (SAKI) is one of the most common and life-threatening complications of sepsis. Patients with SAKI have increased mortality. However, the underlying pathogenesis is unclear, and the treatment targeting SAKI is unsatisfactory. Thus, identifying optimal biomarkers for SAKI diagnosis and treatment is an urgent requisite. Accumulating evidence indicates that noncoding RNAs (ncRNAs) are involved in the occurrence and progression of SAKI. In the present review, we summarized the studies of ncRNAs in SAKI, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The ncRNAs are divided into protective and damage factors according to their role in SAKI, and their expression patterns, functions, and molecular mechanisms were elaborated. Next, we proposed that ncRNAs have the potential to be diagnostic and prognostic biomarkers for SAKI and as new therapeutic targets. This review aimed to provide a comprehensive overview of ncRNAs in SKAI and explored the clinical value of ncRNAs as ideal biomarkers of SAKI.


Assuntos
Injúria Renal Aguda , MicroRNAs , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/genética , RNA Longo não Codificante/genética , Biomarcadores
13.
Kidney Blood Press Res ; 48(1): 535-544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497943

RESUMO

INTRODUCTION: The aim of this study was to investigate the efficacy and safety of limb ischemia preconditioning (LIPC) in the treatment of intradialytic hypotension (IDH) in patients with maintenance hemodialysis (MHD). METHODS: This was a single-center, prospective, and randomized controlled case study. A total of 38 patients with MHD who met the inclusion criteria from September 2021 to August 2022 were selected from the Blood Purification Center of our hospital. They were randomly divided into the LIPC group (n = 19) and the control group (n = 19). For patients in the LIPC group, the femoral artery blood flow was blocked with an LIPC instrument for 5 min (pressurized to 200 mm Hg) before each dialysis, and they were reperfused for 5 min. The cycle was repeated five times, with a total of 50 min for 12 weeks. The control group was pressurized to 20 mm Hg with an LIPC instrument, and the rest was the same as the LIPC group. The blood pressure of 0 h, 1 h, 2 h, 3 h, 4 h, and body weight before and after hemodialysis were measured in the two groups during hemodialysis, the incidence of IDH and the changes of serum troponin I (TNI) and creatine kinase isoenzyme MB (CK-MB) levels before and after the intervention were observed, and the ultrafiltration volume and ultrafiltration rate were recorded. RESULTS: At the 8th and 12th week after intervention, the MAP in the LIPC group was higher than that in the control group (103.28 ± 12.19 mm Hg vs. 93.18 ± 11.11 mm Hg, p = 0.04; 101.81 ± 11.36 mm Hg vs. 91.81 ± 11.92 mm Hg, p = 0.047). The incidence of IDH in the LIPC group was lower than that in the control group (36.5% vs. 43.1%, p = 0.01). The incidence of clinical treatment in IDH patients in the LIPC group was lower than that in the control group (6.3% vs. 12.4%, p = 0.00). The incidence of early termination of hemodialysis in the LIPC group was lower than that in the control group (1.6% vs. 3.8%, p = 0.01). The levels of TNI and CK-MB in the LIPC group after the intervention were lower than those in the control group (322.30 ± 13.72 ng/dL vs. 438.50 ± 24.72 ng/dL, p = 0.00; 159.78 ± 8.48 U/dL vs. 207.00 ± 8.70 U/dL, p = 0.00). The changes of MAP before and after the intervention were negatively correlated with the changes of TNI and CK-MB before and after the intervention (r = -0.473, p = 0.04; r = -0.469, p = 0.04). There were no differences in dry body mass and ultrafiltration rate between the two groups before and after the LIPC intervention (p > 0.05). Multiple linear regression analysis shows that TNI is the main influencing factor of ΔMAP. No LIPC-related adverse events were found during the study period. CONCLUSION: LIPC can effectively reduce the incidence of IDH in patients with MHD and may be associated with the alleviation of myocardial damage.


Assuntos
Hipotensão , Precondicionamento Isquêmico , Falência Renal Crônica , Humanos , Diálise Renal/efeitos adversos , Estudos Prospectivos , Hipotensão/etiologia , Hipotensão/prevenção & controle , Pressão Sanguínea , Falência Renal Crônica/terapia
14.
Kidney Blood Press Res ; 48(1): 485-494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37279699

RESUMO

INTRODUCTION: Acute kidney injury (AKI) caused by cisplatin is common and has a higher incidence of multiple use, resulting in a poor short- and long-term prognosis for patients. There is currently no good premedication AKI risk assessment tool. The aim of this study was to establish an AKI risk assessment nomogram for patients with multiple cisplatin applications. METHODS: This study was a retrospective analysis of patients who were treated with non-first-time cisplatin chemotherapy regimen at Changzhou Second People's Hospital affiliated to Nanjing Medical University from January 2016 to January 2022. All data from the development group were used to screen the impact factors of AKI via univariate and multivariate analyses. A nomogram was developed based on these impact factors and verified with verification group. The area under the curve (AUC) of receiver operating characteristic (ROC) curve, calibration curves, and decision curve analyses (DCAs) were used to evaluate the nomogram. RESULTS: Among the 256 patients enrolled in 450 cycles of chemotherapy, 282 were in the development cohort (97 AKI), and 168 were in the validation cohort (61 AKI). Multivariate logistic regression revealed that age, hypertension, diabetes, serum cystatin C (sCysC), urinary kidney injury molecule-1 (uKim1), and a single dose of cisplatin were independently associated with AKI. The results showed that our model yielded satisfied diagnostic performance with an AUC value of 0.887 and 0.906 using the development group and on verification group. The calibration plots and DCA showed the superior clinical applicability of the nomogram. These results were verified in the validation cohort. CONCLUSION: A nomogram combining functional (sCysC) and tubular (uKim1) injury biomarkers with conventional clinical factors might assess the risk of AKI after multiple cycles of cisplatin chemotherapy.


Assuntos
Injúria Renal Aguda , Nomogramas , Humanos , Cisplatino/efeitos adversos , Estudos Retrospectivos , Injúria Renal Aguda/diagnóstico , Medição de Risco
15.
Chem Commun (Camb) ; 59(41): 6219-6222, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37129088

RESUMO

With the introduction of potassium species, the catalytic oxidation performance over the Pt1/CeO2 catalyst was significantly enhanced, where potassium ions acted as structural and electronic promoters, and formed Pt-O-K interactions with Pt to directly regulate the coordination environment and electronic state of Pt and the metal-support interaction between Pt and CeO2.

16.
Sci Total Environ ; 856(Pt 1): 159056, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36170919

RESUMO

Carbon, nitrogen, phosphorus and oxygen (CNPO) are essential biogenic elements, driving life activities in marine environments. However, the integrated research of fish and seaweed culture on the fluxes of CNPO is scarce. To bridge the research gap, the contribution of mariculture of fish and seaweeds to the fluxes of CNPO in two important mariculture provinces, Fujian and Guangdong, in China, was investigated for the first time. Data from published literature and this study were integrated to calculate the CNPO fluxes using relative formulas. CNP release and O2 loss caused by fish mariculture increased with year (2003-2020) and reached 185.55 ± 3.18 Gg C, 35.92 ± 0.51 Gg N, 7.27 ± 0.24 Gg P and 644.18 ± 11.05 Gg O2 for Fujian and 215.81 ± 2.51 Gg C, 41.77 ± 0.40 Gg N, 8.47 ± 0.19 Gg P and 749.23 ± 8.71 Gg O2 for Guangdong in 2020. The averaged P fluxes due to fish mariculture in Fujian and Guangdong during 2016-2020 are 2.2 folds of the Min River and 69 % of the Pearl River, respectively. CNP removal and O2 generation by seaweed culture in Fujian also increased with year (2003-2020) and reached 555.74 ± 16.45 Gg C, 58.44 ± 4.83 Gg N, 7.80 ± 1.41 Gg P and 1481.97 ± 43.86 Gg O2 in 2020. In contrast, seaweed culture in Guangdong resulted in maximal C (39.81 ± 1.43 Gg), N (4.33 ± 0.26 Gg) removal and O2 (106.15 ± 3.82 Gg) release in 2013 and maximal P (0.41 ± 0.03 Gg) removal in 2019. The averaged N and P fluxes due to seaweed culture in Fujian during 2016-2020 are 69 % and 2.4 folds of the Min River, respectively. The different mariculture structure leads to a net CNP sink in Fujian but a net CNP source in Guangdong. The net CNP source may lead to seawater acidification, eutrophication and deoxygenation in coastal areas. These findings supply solid data for adjusting mariculture structure to achieve CNPO neutrality within mariculture.


Assuntos
Alga Marinha , Animais , Monitoramento Ambiental/métodos , Aquicultura , Eutrofização , Peixes , Fósforo/análise , Nitrogênio/análise , China , Carbono
17.
Mar Environ Res ; 179: 105695, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35839744

RESUMO

To understand how seasonal factors could drive the formation of green tide blooms and their flotation and decay, we cultured the green tide algal species Ulva prolifera at various temperatures (5, 10, 15, 20, 25, 30, and 35 °C) and light intensities (40, 80, 140, 240, and 400 µmol photons m-2 s-1). The results showed that the ratio of floating U. prolifera increased with increasing light and temperature, which was accompanied by morphological changes. The net photosynthetic rate and the proportion of floating U. prolifera thalli showed a nonlinear relationship. Furthermore, an enclosure experiment confirmed that the flotation of U. prolifera was influenced by light intensity via the regulation of photosynthesis of the thalli. These results suggest that seasonal factors control the photosynthesis of U. prolifera, which drives the flotation and decay of green tide algae in the Yellow Sea.


Assuntos
Clorófitas , Ulva , Aclimatação , Adaptação Fisiológica , China , Eutrofização , Fotossíntese , Estações do Ano , Ulva/fisiologia
18.
Sci Rep ; 12(1): 5194, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338166

RESUMO

The effects of polycyclic aromatic hydrocarbons on phytoplankton have been extensively documented, but there is limited knowledge about the physiological responses of marine primary producers to phenanthrene at environmentally relevant levels. Here, we investigated the toxicity of phenanthrene (0, 1, and 5 or 10 µg L-1) to the physiological performance of two cosmopolitan phytoplankton species: the green alga Chlorella vulgaris and bloom-forming diatom Skeletonema costatum. The specific growth rates of both species were remarkably inhibited at both low (1 µg L-1) and high phenanthrene concentrations (5 or 10 µg L-1), while their tolerance to phenanthrene differed. At the highest phenanthrene concentration (10 µg L-1), the growth of C. vulgaris was inhibited by 69%, and no growth was observed for S. costatum cells. The superoxide dismutase activity of both species was enhanced at high phenanthrene concentration, and increased activity of catalase was only observed at high phenanthrene concentration in C. vulgaris. Interestingly, the low phenanthrene concentration stimulated the photosynthetic and relative electron transport rates of S. costatum, whereas hormetic effects were not found for growth. Based on our results, phenanthrene could be detrimental to these two species at a environmentally relevant level, while different tolerance levels were detected.


Assuntos
Chlorella vulgaris , Diatomáceas , Fenantrenos , Fenantrenos/farmacologia , Fotossíntese , Fitoplâncton
19.
Mar Environ Res ; 175: 105581, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151949

RESUMO

Extensive studies have documented the responses of diatoms to environmental drivers in the context of climate change. However, bloom dynamics are usually ignored in most studies. Here, we investigated the effects of the initial pCO2 on the bloom characteristics of two cosmopolitan diatoms, Skeletonema costatum and Thalassiosira weissflogii. Batch cultures with two initial pCO2 conditions (LC: 400 µatm; HC: 1000 µatm) were used to investigate bloom dynamics under current and ocean acidification scenarios. The simulated S. costatum bloom was characterized by fast accumulation, a rapid decline in biomass, and a shorter stationary phase. The T. weissflogii bloom had a longer stationary phase, and cell density remained at high levels after culturing for 19 days. The physiological performances of the two diatoms varied significantly in the different bloom phases. We found that the initial pCO2 has modulating effects on biomass accumulation and bloom dynamics for these two diatoms. The higher initial pCO2 enhanced the specific growth rate of T. weissflogii by 6% in the exponential phase, leading to higher cell densities, while 86% higher decay rates were observed in the HC cultures of S. costatum. Overall, ocean acidification may alter the dynamics of diatom blooms and may have profound impacts on the biological carbon pump.


Assuntos
Diatomáceas , Técnicas de Cultura Celular por Lotes , Dióxido de Carbono , Diatomáceas/fisiologia , Concentração de Íons de Hidrogênio , Água do Mar
20.
Front Plant Sci ; 12: 726538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603355

RESUMO

While intertidal macroalgae are exposed to drastic changes in solar photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) during a diel cycle, and to ocean acidification (OA) associated with increasing CO2 levels, little is known about their photosynthetic performance under the combined influences of these drivers. In this work, we examined the photoprotective strategies controlling electron flow through photosystems II (PSII) and photosystem I (PSI) in response to solar radiation with or without UVR and an elevated CO2 concentration in the intertidal, commercially important, red macroalgae Pyropia (previously Porphyra) yezoensis. By using chlorophyll fluorescence techniques, we found that high levels of PAR alone induced photoinhibition of the inter-photosystem electron transport carriers, as evidenced by the increase of chlorophyll fluorescence in both the J- and I-steps of Kautsky curves. In the presence of UVR, photoinduced inhibition was mainly identified in the O2-evolving complex (OEC) and PSII, as evidenced by a significant increase in the variable fluorescence at the K-step (F k) of Kautsky curves relative to the amplitude of F J-F o (Wk) and a decrease of the maximum quantum yield of PSII (F v/F m). Such inhibition appeared to ameliorate the function of downstream electron acceptors, protecting PSI from over-reduction. In turn, the stable PSI activity increased the efficiency of cyclic electron transport (CET) around PSI, dissipating excess energy and supplying ATP for CO2 assimilation. When the algal thalli were grown under increased CO2 and OA conditions, the CET activity became further enhanced, which maintained the OEC stability and thus markedly alleviating the UVR-induced photoinhibition. In conclusion, the well-established coordination between PSII and PSI endows P. yezoensis with a highly efficient photochemical performance in response to UVR, especially under the scenario of future increased CO2 levels and OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...